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Abstract

A symbolic debugger allows a user to display the values of program variables at a breakpoint. However,

problems arise if the program is translated by an optimizing compiler. This paper addresses the

effects of global register allocation and assignment: a register assigned to a variable V may not be

holding V's value at a breakpoint since the register can also be assigned to other variables. We define

the problem of determining whether a variable is in its assigned register as the residence problem.

Prior work on debugging of optimized code has focused on the currency problem; detecting whether a

variable's run-time value is the expected value. Determining residence is a more serious problem than

currency detection. We present a data-flow algorithm that accurately computes a variable's residency,

by determining when a variable becomes evicted from its register. We measure the effectiveness of

different approaches to determine variable residence for three C programs from the SPEC suite.
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1 Introduction

Optimizations commonly employed by current compilers duplicate, eliminate or reorder operations and
values so that it is difficult for a symbolic debugger to discover the correspondence between source
and object code. Such optimizations may make it difficult to set breakpoints or to inspect variables;
some values may either be inconsistent with what a user expects based on the source code, or may be
inaccessible in the run-time state. A symbolic debugger for optimized code must detect these values
and respond appropriately to a user query.

The problems encountered by a symbolic debugger of optimized code have received considerable
attention in the past. Starting with Hennessy [12], a number of studies [14,10,8,3,11] have investigated
the detection and recovery of noncurrent variables, variables whose values are inconsistent with what
the user expects from inspecting the source.

This paper discusses a more fundamental problem that a symbolic debugger has to handle: de-
tection of nonresident variables. Global register allocation and assignment effectively exploit modern
architectures that have large register files and high memory access latencies, and these optimizations
axe incorporated in almost all modern optimizing compilers. These optimizations, however, affect de-
bugging by making variables inaccessible at a breakpoint. By attempting to pack as many variables
as possible into a limited number of registers, global register allocation re-assigns registers to different
variables at different points in the program. Therefore, a source level variable V may be inaccessible
at a breakpoint if the register assigned to V holds the value of some other variable at that point, and
there is no other location that holds V's value.

From the viewpoint of the user, noncurrent and nonresident variables are similar in that the debug-
ger cannot display the expected value. However, a noncurrent variable has a value that is inconsistent
with what the user expects, whereas a nonresident variable has no value. That is, the value in a non-
current variable's run-time location is a source level value, but it is not the value expected by the user.
Therefore, since the value has some meaning in the source, it may be helpful to the user if the debugger
can convey what source value a noncurrent variable's value corresponds to [11,8]. On the other hand,
no source value can be displayed for a nonresident variable.

This paper investigates the problem of detecting nonresident variables in the presence of global
register allocation. Our solution is based on using data-flow analysis techniques for the debugger to
detect all points where source level values are in their assigned run-time locations. The problem of
detecting resident variables is concerned only with whether a variable V's register contains any source
value of V, and not whether V is current. Other mechanisms must exist that detect noncurrent
variables. These mechanisms are orthogonal to our method of detecting nonresidence. Other compiler
optimizations do not affect our method as long as the compiler can provide the necessary bookkeeping
of source assignments.

To measure the effects of our approach (and the seriousness of the problem), we have implemented
the techniques in a production C compiler that performs code compaction and register allocation for
an LIW machine with a large register file. We have compared the effects of nonresidency with the
effects of noncurrency on the debugger's ability to recover source values at a breakpoint. Our results

indicate that nonresident variables are a serious problem; the assumption (made if noncurrency is the
only issue of concern to the debugger) that a variable is always accessible in its assigned run-time
location presents a picture that is too optimistic. Furthermore, a separate data-flow analysis phase in
the debugger for tracking a variable's run-time location significantly improves the number of variables
accessible by the debugger; an overly conservative approach to tracking a variable's run-time location
(as presented in [11]) misses many opportunities.

The following section discusses the problem of debugging optimized code. Section 3 describes our
global register allocation model. Section 4 discusses approaches to detecting nonresident variables and
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describes our solution. Section 5 discusses the effects of optimizations employed by the code generator

to eliminate register copy operations. Section 6 compares our work with prior work in debugging
optimized code. Section 7 reports the results of using our approach on some sample programs, and
Section 8 presents our conclusions.

2 Debugging optimized code

Our debugger model is the same as that usei by a number of other researchers (see e.g. [81). The
debugger supports the base operations of setting control breakpoints, inspecting data, and resuming
execution after a breakpoint. Control breakpoints are either synchronous, such as source level break-
points, or asynchronous, such as program faults or user interrupts. Data inspection is limited to source
variables, and the debugger does not change the state of a program except for setting breakpoints;
data modification by the user is not supported. The debugger is non-invasive; no modification of the
program's code or data is allowed, i.e., the code executed when debugging is identical to the code exe-
cuted otherwise, and the storage layout of the program is not perturbed. Our model does not allow the
compiler to insert extra code to make debugging easier. For example, the compiler does not insert path
determiners [15] into the object code to determine the execution path leading to a breakpoint, even
though such knowledge allows the debugger to perform better analysis while retrieving source values.
Furthermore, registers are only saved when necessary for the execution of the program, the compiler
does not save old values solely to assist the debugger. The compiler will, however, leave sufficient
information describing correspondences between the object and source codes, such as a mapping of
variables to storage locations.

When the debugger is invoked as a result of a control breakpoint, the point in the object at
which execution has halted is called the object breakpoint location, and the source statement where the
breakpoint is reported is called the source breakpoint location.

Debugger functions can be classified into two groups: related to program flow (setting breakpoints:
mapping a source-level location into a location in the object code; reporting exceptions: mapping
a faulting machine operation into source code), and related to data (reporting the values of user
variables). Problems related to the former are known as code location problems, while those related to
the latter are known as data value problems [16]. In this paper, we only address the data value problem
of retrieving source level values from the run-time state of a halted program. Our work assumes
that breakpoints can occur anywhere in the object code and hence applies to both synchronous and
asynchronous breakpoints. See [8] or [15] for a discussion of flow related issues.

2.1 Retrieving source values

In response to a query of a variable V's value at a source breakpoint location S, the user expects the
value from the latest source assignment to V, relative to S. This value is the expected value of V [8].
The debugger either presents V's expected value or detects and reports that V's expected value cannot
be presented. If a value cannot be presented, the debugger may provide additional guidance to the user

by conveying how optimizations have affected source values. Thus we assume the debugger exhibits
truthful behavior [161.

A variable's expected value is not always retrievable from the run-time state of an optimized pro-
gram. Two conditions must be satisfied to retrieve a variable V's expected value at a breakpoint:

1. V must be accessible in a storage location (memory, register, condition codes, ... ) of the machine.
If the debugger determines that V is accessible in a storage location, V is called resident, otherwise
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V is called nonresident. The storage location where V is accessible is called V's residence, and
the value in V's residence is called V's actual value [8].

2. V's actual value must be the same as V's expected value. If V's residence holds V's expected
value, V is called current, otherwise V is called noncurrent [12]. A nonresident variable does not
have an actual value, hence currency can not apply to such a variable.

In unoptimized code, a variable has a home location whose value always matches the variable's
expected value at a breakpoint. Thus the debugger can retrieve a variable's expected value from the
variable's home location. Optimizing transformations complicate the retrieval of values by violating
the conditions above; either a variable is inaccessible because the debugger determines the variable has
no residence, or a variable is resident, but its value is noncurrent because the variable's actual value is
not the same (or may not be the same [1]) as its expected value. This paper focuses on the problem of
detecting nonresident variables.

2.2 Example

r3 r4

SI: a = b+c; 1IF rl - load b C
S2: d = e*f; 12:* r2 4 load g
$3: c = a-g; 13: r3 4- fpadd rl,r3 j
S4 : a = c; 14: rl 4 load e

15: r3 -- fpsub r3,r2
16: r4 4- p .l rr4
17: a 4 store r3 T d

Source code Object code Residence ranges
(a) (b) (c)

Figure 1: Example of noncurrent and nonresident variables

Consider the source and object codes shown in Figure 1(a) - (b). In this example, variable c has been
assigned register r3, while d and f have both been assigned register r4. Register r3 is also 11 :ed as an
expression temporary at instruction 13. No code has been generated to perform a store to a for S,
since S 's assignment is redundant. The value computed by this statement is kept in register ;-3 for use
by statement S3. Figure 1(c) shows the ranges of instructions during which register P, Aigned variables
are rpsident. c is resident upon entry to this block until instruction 13, at which point c becomes dead
and r3 is reassigned to a temporary. c becomes resident again at 15. r4 contains a value of f upon
entry, hence d is nonresident. At 16, r4 is reassigned to d, and as a result f becomes nonresident.

Table I lists the nonresident and noncurrent variables at all possible object breakpoint locations
in the code of Figure 1. We report an asynchronous breakpoint at an instruction I as a breakpoint at
the source statement for which I was generated. The first two columns of Table 1 show the mapping
from object locations to source statements. The third column presents the source expression that is
computed by each instruction, and the last two columns list the nonresident and noncurrent variables
if a breakpoint happens at a given instruction.

Consider a breakpoint at instruction Is, reported at statement S3 in the source. At this breakpoint,
the expected value of a is the value assigned at statement S1, and the expected value of d is the value
assigned at statement S2. The actual value of a is the value in a's memory location before entry into
this block, since the store to a has been eliminated. Therefore, a is noncurrent. d is nonresident at this
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Breakpoint Location Source Expression Nonresident Noncurrent
Object I Source Evaluated by Instruction Variables Variables

I, S1  b d

12 S3  g d a
13 S1  b~c d

14 S2 0 c,d a
AS I -S3 c - a-g c,d a
Is S2 d a e*t d a,c

I7 S4  a-c f a

Table 1: Nonresident and noncurrent variables at breakpoints in code of Figure 1

breakpoint, because the register assigned to d (r4) is holding f's value. c is also nonresident because
its register (r3) is holding the temporary value computed at 13. Therefore no actual values exist for c
and d. The expected and actual values ofb,e and f are the values assigned by the last assignments to
these variables before this block. Therefore, these variables are current at this breakpoint.

2.3 Nonresident and noncurrent variables

Observe that noncurrent and nonresident variables are different with regard to the possible behavior of
the debugger. In the case of a noncurrent variable V, the debugger may provide additional information
to the user by displaying V's actual value and attempting to explain what value is being displayed. E.g.,
consider a breakpoint occurring at Is and reported at statement S2 in Figure 1. At this breakpoint,
the assignment to c of statement S3 has executed too early at Is. In response to a user query of
c, the debugger may display the value in register r3 (c's actual value) and explain to the user that
the displayed value is the value of c assigned at S3 because optimizations have caused statement S3

to execute too early. This approach was adopted in the DOC debugger (11]. Copperman [81 gives
suggestions about what information should be presented to the user.

In the case of a nonresident variable, however, no actual value exists that can be presented to the
user. For example, at a breakpoint at Is, c is nonresident because its assigned register r3 is holding
the temporary value computed at instruction 13. This value has no relation to c (in fact, it is the value
of a computed by statement S$) and therefore will not be helpful to the user. The debugger can only
inform the user that the requested variable has been optimized away (i.e., the variable is unavailable),
as is done in DOC (111 and CXdb (4].

An approach to dealing with noncurrent and nonresident variables is to recover a variable's expected
value from the actual values of other variables and temporaries [12]. E.g., at a breakpoint at 15, the
debugger may infer that a's expected value is in r3. Recovering values in globally optimized code is
difficult (see [12] for a discussion of the scenarios when recovery can be attempted), and the effectiveness
of recovery in practice is unknown.

2.4 Uninitialized variables

When the user inspects a variable, the variable's expected value may be immaterial because the vari-
able has not been initialized during the execution of the program. Thus the question of whether an
uninitialized variable V is resident or current is irrelevant, since V has no expected value. The de-
bugger may either detect and warn the user of uninitialized variables, or it may let the user beware.
Detecting and reporting uninitialized variables can reduce the number of variables that are reported
as ncuresident or noncurrent and provides additional information to the user.
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In the absence of support provided by the run-time system (e.g., path determiners [15]) or the
architecture (e.g., memory tags), detecting uninitialized variables requires that the debugger obtains
program flow analysis information from the compiler. If no definition of a user variable V reaches a
point Sin the source, then Vis uninitialized whenever the program breaks at S. This data-flow problem
is known as reaching definitions [2]. Note that the debugger cannot help in the case that definitions
reach on some but not all paths to S.

eferring back to the example of Figure 1, if no source assignment of d reaches the block of code, d
can be reported as uninitialized rather than nonresident at any breakpoint reported at S1 or S2. In
this example, these are breakpoints that occur at I1, 13, 14 and 16.

3 Global register allocation

Register allocation and assignment attempt to speed up program execution by keeping frequently
accessed values in high speed registers. Such values include variables, temporaries, and constants, but
since we are concerned with source-level debugging, we do not mention temporaries or constants any
further.

Our model of register allocation is similar in style to Chaitin's [5] and is based on the optimizing
compiler that we have used in our empirical studies. In our model, a variable is either promoted to a
register (selected to reside in a register) or given a home location in memory. Register assignment binds
physical registers to register promoted variables, and in our compiler, register assignment happens after
instruction scheduling. A register is assigned for exclusive use by a variable during the variable's live
range [6], which consists of instruction ranges between definitions and last uses of the variable.

If spilling is required during register assignment, the whole live range of a variable is spilled to
memory. Loads and stores are added to the schedule to access spilled variables. Disjoint segments of
a live range are not renamed, nor are live ranges split during register assignment. Thus, each register
promoted variable V is either spilled to memory (if there are not enough registers), or it is assigned a
single physical register denoted R(V) for the duration of its live range. A register promoted variable
that is assigned a physical register is referred to as a register assigned variable. Variables that have
home locations in memory (including those that are spilled to memory) are always resident, since their
storage locations are not shared with other variables. Register assigned variables, however, may be
nonresident since a register is usually assigned to many variables.

Coalescing, also known as subsumption [5], eliminates copy operations. This optimization coalesces
two variables whose live ranges do not interfere and are connected by a copy operation. As a result.
both variables are assigned the same physical register.

4 Detecting nonresident variables

There are several approaches that a debugger may take to determine if a variable is resident at a given
object location. Since a variable is resident during its live range, one way to detect resident variables is
to consider a variable as resident at an object breakpoint within the variable's live range. The advantage
of this approach is that live range information is computed at compile time by the compiler's register
assignment phase. E.g., in the DOC debugger [11], the address ranges of instructions in a variable's
live range are recorded in the range record data structure at the same time as the interference graph is
built by the register assigner. The range records are passed to the debugger, which uses them to detect
whether a breakpoint lies within a variable's live range.

Using a variable's live range for determining residency is simplistic-and conservative; the debugger
uses a simple rule that is always right but misses opportunities. A variable's assigned register may still
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Jo: .. (I) ()
I,: def r dcefx (Xd c d

12: .. by live range
I3: use r last use x
14: ... by flow- anysisI5:def r def y

16:..

Object code Ranges in which x is resident
(a) (b)

Figure 2: Example illustrating the approaches to detecting nonresident variables

be holding the variable's value after the variable's live range (e.g., after the last use of the variable).
This is illustrated in Figure 2(a). This figure shows a sequence of definitions and uses of a register r
in a straight line piece of object code. Register r has been assigned to source variables x and y. The
definition at I1 writes a value of x into r, and this definition marks the beginning of x's live range,
whereas the use of r at 13 is the last use of x and establishes the end of x's live range. x is definitely

resident at a breakpoint occurring at either 12 or 13, since these instructions lie within x's live range.
x remains resident until Is writes y's value in r, thus evicting x from r (eviction is discussed in Section
4.2). But the range of instructions after 13 are not part of x's live range. Hence, at a breakpoint at 14,

a debugger that bases x's residency on x's live range will report x as being nonresident, even though r
still contains x's value.

4.1 Terminology

Before discussing the details of our approach, we introduce some terminology. A control flow graph
is a directed graph (B, S, E) where B is the set of basic blocks; S E B is the entry block: E is the

set of edges between blocks such that if (B,, Bj) E E then control may immediately reach Bj from
Bi. Each basic block Bi contains a sequence of instructions generated by the compiler, as well as a
special preamble instruction that appears before the other instruction in B,, thus dominating them.

A preamble instruction is an abstraction that is used by our algorithms, it is not generated by the
compiler nor does it appear in the object code. Given an instruction I, we define the set of predecessor
instructions of I, denoted pred(I), as the set of instructions from which control can immediately reach
I. A point is defined as being either between two adjacent instructions, before the first instruction in a
basic block, or after the last instruction in a basic block. The point immediately before an instruction I
is denoted pre(I), and the point immediately after I is denoted post(I). The entry point of the control
flow graph is the point at the beginning of the source basic block S. The entry point dominates all
other points in the control flow graph. A path is defined to be a sequence of points PI ...Pn such that
for each adjacent pair pi,pi+1, either pi = pre(I) and Pi+i = post(I) for some instruction I, or pi is a
point at the end of a block Bj and Pj+I is a point at the beginning of a block Bk and (Bj, Bk) E E.

We call an instruction that targets a register r a definition of r. An instruction I reaches a point p

if there exists a path from post(I) to p along which the register defined by I is not redefined. The set

of definitions of a register r that reach a point o is denoted by ReachingDef(r,o).

4.2 Evicted variables

An approach to detecting nonresident variables that is more accurate than using live ranges is to
precisely detect all points where V becomes nonresident. This implies detecting that x is still resident
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at 14 in Figure 2(a) and allows the debugger to display the value of x outside of x's live range, as
depicted by Figure 2(b). In the rest of this section, we describe a method based on data-flow analysis
that realizes such an approach by detecting evicted variables ýc a breakpoint, an evicted variable is a
register assigned variable V whose assigned regioter R(V) may ,ontain a value that is not from a source
assignment to V. Since only register assigned variables can be nonresident, all further references to
variables in this section are to register assigned variables.

To track whether b, riable V's value is contained in R(V), definitions that write a source value of
V into R(V) must be distinguished:

Definition 1 Let E be a source assignment expression that assigns to a variable V. Of the instructions
generated for E, the instruction that assigns V's value to R(V) is referred to as a source definition
of V and is denoted by Iv(E).

At the point immediately following a source definition of V, V is resident since R(V) holds a value
from a source assignment to V.

Referring back to Figure 1, instructions 15 and 16 are generated'for statements S3 and S2 respec-
tively. These instructions target the registers assigned to variables c and d with the source values of
these variables computed at statements S3 and S2. Hence Is and 16 are source definitions of c and d
Ic(S3) = 15 and Id(S2) = /6.

To detect whether a variable V is evicted, the debugger must analyze paths leading to a breakpoint
to discover which value is being held by R(V):

Definition 2 A variable V is evicted along a path p in the object if execution of the path p results
in R(V) containing a value that is not a value from a source definition of V. If R(V) is uninitialized
along p, then R(V) is considered as having no value and V is not evicted along p.

Definition 3 A variable V is evicted at a point o in the object, if V is evicted along at least one
path leading from the entry point to o. The predicate IsEvicted(V, a) is true if a variable V is evicted
at point o in the object.

Note that the definition of an evicted variable does not depend on where the breakpoint is reported
in the source. We are concerned only with whether R(V) holds a value of V, not whether it holds the
expected value of V.

Consider the control flow graph of Figure 3. In this figure, variables x, y and z have all been assigned
the same register r. Each basic block contains at most one instruction that is a source definition of one
of the variables. At the beginning of block B3, x and z are evicted, since all execution paths leading
to this point result in r containing a value of y. Similarly, at the beginning of block B5, y and z are
evicted since all execution paths leading to this point result in r containing a value of x. Table 2 lists
the evicted variables at the start and end of each basic block in Figure 3.

To detect whether a variable V is evicted at a point o, we must consider all values that may
possibly be contained in R(V) if execution is halted at o. This can be accomplished by examining the
set ReachingDef(R(V),o). If there exists any definition d E ReachingDef(R(V),o), such that d is not a
source definition of V, then there exists a path leading to o which results in R(V) containing a value
that is not a value from a source definition of V, and hence by Definition 3 !sEvicted(V, o) is true.
Conversely, if IsEvicted(V, o) is true, some definition of R(V) that is not a source definition of V must
reach o. Thus, the eviction problem may be cast in terms of reaching definitions:

Lemma 1 A variable V is evicted at a point o in the object iff there exists a definition d E Reach-
ingDef(R(V),o) such that d is not a source definition of V.
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R.02): r

B2 j B2

83

ix(S4): r . .

B5
,R(x) = R(y) = R(z) =r

Figure 3: Object control flow graph

SBasic Block Evicted Variables Evicted Variables

Iat Start of Block_ at End of Block

B2 yo; x,z
B3 x,z x4y
B4' x~y~z y,z

I B5 I~ YZ L y,zI

Table 2: Evicted variables at the start and end of each block in Figure 3
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Instruction Variables Evicted
by Instruction

" (S1 ) y,z
IY(S2) X,z
Iz(S3 ) x,y
IX(S 4) y,z

Table 3: Variables evicted by instructions in Figure 3

4.3 Computing evicted variables

By Lemma 1, IsEvicted(V, o) can be solved for by computing the set ReachingDef(R(V),o), and check-
ing whether there is a definition in ReachingDef(R(V),o) that is not a source definition of V. A simpler
approach to computing IsEvicted(V,o) is to track whether any definition of R(V) that is not a source
definition of V reaches o, using data-flow analysis. Whereas a source definition writes the value of a
variable V into R(V), an evicting definition of V writes the value of a variable other than V into R(V):

Definition 4 An evicting definition of a variable V is a definition of R(V) that is not a source
definition of V.

Given an evicting definition I of a variable V, we say V is evicted by I (or I evicts V). Table 3 lists
the variables evicted by the instructions in Figure 3. For each register promoted variable V, we define
the predicate EvictReach(V, o) as follows:

Definition 5 The predicate EvictReach( V, o) is true at a point o in the object if any evicting definition
of variable V reaches o.

Note that by Lemma 1, EvictReach(V, o) is equivalent to IsEvicted(V, o). Hence, solving for EvictReach(V, o)
is equivalent to solving for IsEvicted(V, o).

Since no ,-victing definitions reach the entry point s of the flow graph, no variable is evicted at s.
Given an instruction I, let EvictReachln(I) be the set of variables {V : EvictReach(V, pre(1))}

and let EvictReachOut(I) be the set of variables {V : EvictReach(V, post(I))}. Evicting definitions
of a variable V reach the point immediately before an instruction I if evicting definitions of V reach
the points after any of I's predecessor instructions. Thus the EvictReachln set of an instruction I is
related to the EvictReachOut sets of I's predecessor instructions by the following data-flow equation:

EvictReachln(I) = U EvictReachOut(J)
JEPred(l)

An instruction I that is an evicting definition of a variable V causes Evict Reach(V, post([)) to
be true, and thus generates a reaching evicting definition of V. The set of variables that are evicted
by an instruction I is denoted by EvictReachGen(I) . Similarly, an instruction J that is a source
definition of V, re-establishes V's residence by killing all reaching evicting definitions of V, and causes
EvictReach(V,post(J)) to be false. EvictReachKill(J) denotes the set of variables for which J is a
source definition. The sets EvictReachGen and EvictReachKill are defined for an instruction I that
defines register R(V):

* If I is a source definition of V, then V E EvictReachKill(I).
Otherwise, V V EvictReachK ill(I).
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9 If I is an evicting definition of V, then V E EvictReachGen(I).
Otherwise, V % EvictReachGen(I).

The EvictReachln and EvictReachOut sets of an instruction are related by the following data-flow

equation:

EvictReachOut(I) = (EvictIn(I) U EvictReachGen(I)) \ EvictReachKill(I)

Function calls kill the contents of caller saved registers and therefore evict all variables that are

assigned caller saved registers.

5 The effects of coalescing

Coalescing or subsumption [5] is an optimization that eliminates copy operations by assigning the

smre pliysical register to the source and destination operands of a copy operation. Coalescing affects

dbuggeiag when the eliminated copy operation is a source definition Iv(S) of a variable V. E.g.,

consider the source and object codes depicted in Figure 4. Part (a) of this figure shows the source

code, while parts (b) and (c) show the object code before and after register assignment respectively.

In this example, 1y(SI) = 11 and I(S 2) = 12 before register assignment. Assume that the live ranges

of x and y do not interfere. The register assigner coalesces x and y, eliminating the copy operation 12

and assigning the same register r to-both x and y (r = R(x) = R(y)).

SI: y = ... I: y ... I: r =

S2: X = y; 12 : X y

(a) (b) (c)

Figure 4: Effects of register subsumption

To capture the effects of coalescing, we consider the source definition corresponding to S2 as being

executed by I, at the same time as Si, so that Ix(S2) = Iy(SI) = 11 and {x,y} C EvictReach KiIl([, ).

If execution stops somewhere between S1 and S2 in the source, but after I, in the object, x and y are

both resident in r. The actual value of y is the value assigned by S1, while the actual value of x is the

value assigned by S2 . Hence, y is current and x is noncurrent. If execution stops after S2 in the source,

but aftex I, in the object, both x and y are current.
A less precise model is to consider S 2 as an eiiminated assignment. Thus at a breakpoint after S-2

in the source and after I in the object, x will be detected as nonresident since I, is a reaching evicting

definition of x. However, this is conservative since r contains the value tha, would have been assigned

to x by S2 , which is x's expected value.

In general, when coalescing eliminates an instruction I = Iv(S), the source definition instruction

Iv(S) is changed to an earlier definition of R(V) that reaches pre(I). Figure 4 illustrates the simple

case where the earlier definition of R(V) is within the same basic block as the eliminated copy opera-

tion. However, no earlier definition of R(V) may exist within the same basic block as the eliminated

instruction. Figure 5 illustrates other cases that can occur. In this figure, coalescing eliminates the

copy x = y. In Figure 5 (a) S post-dominates all reaching definitions of R(V). Thus we may consider

both reaching definitions as source definitions of S, adjusting 1.(S) accordingly. Note that this moves

the definition of x into different basic blocks and results in multiple source definitions. This has ram-

ifications on the noncurrency detection algorithms which now have to address global code re-ordering
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[1]. If there exists a reaching definition D that is not post-dominated by S, as shown in Figure 5(b),

D cannot be considered a source definition of x.

X

(a) (b)

Figure 5: Global register coalescing

To avoid these two problems all together, we model the source definition of S in both cases to be
the pre-amble instruction of S's basic block. In other words, if there does not exist a prior definition
of R(V) in the basic block, the pre-amble instruction is used.

6 Comparison with other work

Prior work on debugging optimized code has mostly assumed that variables are always accessible in
a run-time storage location. With the exception of the DOC [11] and CXdb [4] debuggers, previous
research has overlooked the problem of nonresident variables.

Hennessy's work [12] and later refinements of Wall et. al [14] deal with detection and recovery
of noncurrent variables in the presence of local optimizations and code generation using DAGs. The
model of [12] assumes that all variables have home locations in memory and does not consider values
held in registers. The code generator is cast at the intermediate representation level (before variables
are bound to machine resources) and operates without reference to any specific features of the target
machine (like load delays or a horizontal instruction format). However, code generators in modern
compilers typically are tightly tuned to the instruction-level parallelism and storage hierarchy of the
target architecture, as modern architectures rely on instruction scheduling and register allocation for
performance.

Copperman ([81, [7]), proposes a method of detecting noncurrent variables using global data-flow
analysis but does not consider nonresident variables. A similar approach has been proposed by Bemmerl
[3].

In another work, Copperman and McDowell point out that Hennessy's model does not consider
values held in registers (10]. However, they still consider the problem at the intermediate representation
level without reference to registers. They suggest that allowing multiple assignments to a variable within
a basic block addresses this problem. However, this does not handle the case of nonresidence caused
by register re-use.

DOC [11] is the first system that we are aware off that deals with multiple storage locations for
variables. DOC tackles this problem by computing the location and currency of a variable in the
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compiler, this information is then passed to the debugger in range records. A range record provides
the debugger with the storage location assigned to a variable or, in the case that a variable has been
eliminated and replaced with a constant, the variable's value. The range of object code addresses
during which a range record is valid is also specified in the record.

The description in [11] states that range records of a register promoted variable span only the
variable's live range but the paper does not indicate how the debugger responds to a user query of
a register promoted variable at breakpoints outside of the variable's live range, e.g., at a breakpoint
before the variable has been defined or after its last use. According to Copperman and McDowell
[10], DOC reports a variable as inaccessible after its last use. CXdb [4] is another system that detects
nonresidency using the live range approach[13].

7 Results

To compare the problems caused by nonresidency with those caused by noncurrency, and to evaluate
the effectiveness of using data-flow analysis, we have implemented our approach using the iWarp C
compiler (pre-release version 2.7). This compiler is based on the PCC2 compiler from AT&T that has
been enhanced with global optimizations. The target machine is the iWarp processor, an LIW machine,
with 128 registers, of which 94 are available to the compiler.

The compiler performs global register allocation and assignment, branch optimizations, unreachable
code elimination, common subexpression elimination, value propagation, constant folding, and instruc-
tion scheduling. Common subexpression elimination, value propagation, and instruction scheduling are
performed at the basic block level. The register allocation model is the one described in Section 3.
Due to the large number of registers in our machine, none of the benchmarks requires live ranges to be
spilled to memory.

The compiler annotates each operation in the intermediate representation (IR) of the program
with the list of machine instructions generated for the operation. The IR of assignments that have
been eliminated due to coalescing are annotated as described in Section 5. Register assignments are
recorded in a table that maps register assigned variables to physical registers. This information is used
by our algorithms to detect nonresident and noncurrent variables (details of our algorithm for detecting
noncurrent variables are described in [1]). These algorithms can be performed either in the compiler
for the debugger, or in the debugger. For our experiments, these algorithms were implemented in a
separate program that gathers statistics.

Our experiments compare the effects of data-flow analysis techniques for finding evicted variables
to a simple approach, which tracks a variable's location only during the variable's live range. We also
investigate the effects of using reacliing analysis to find uninitialized variables at breakpoints.

We look at the following four approaches to detecting nonresident variables:

1. A variable is resident during its live range only.

2. A variable is resident during its live range only, and reaching analysis detects uninitialized vari-
ables.

3. A variable is resident wherever it is not evicted.

4. A variables is resident wherever it is not evicted, and reaching analysis detects uninitialized
variables.

In the first approach, the debugger is successful in recovering a variable V's value if a breakpoint
occurs inside V's live range. The second approach augments the first approach by using reaching
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analysis to detect uninitialized variables. In this approach, the debugger is successful in recovering a
variable V's value if the breakpoint occurs inside V's live range. At a source breakpoint where V is
not reaching, the debugger reports V as uninitialized. This reduces the number of variables reported
nonresident, since uninitialized variables are not reported as nonresident.

The third approach uses the data-flow analysis technique described in Section 4.3 to find all points
where a variable V's assigned register R(V) contains V's value. However, at a breakpoint, an uninitial-
ized variable V is reported as nonresident if an evicting definition of V reaches the object breakpoint
location. Recall that such an evicting definition is not a source definition of V. The fourth approach
adds reaching analysis to the third approach to detect uninitialized variables and therefore only reports
variables as evicted if there is a source definition that reaches the breakpoint. This approach is the
most aggressive and least conservative of the four.

100
90o Bkpts with noncurrent variables

80- E3 Bkpts with nonresident variables, residence
70- Ndetermined by live range

5 Bkpts with nonresident variables, residence
determined by live range and reaching dataflow

OD 40- for uninitialized variables

30- Bkpts with nonresident variables, residence

20-/ determined by dataflow for eviction (Sec. 3)

10- Bkpts with nonresident variables, residence
0- determined by dataflow for eviction and reaching

dataflow for uninitialized variables(a)

100• 100.
go- 90-

80- so-
70- 70-

60- 60-

30- 30-

20- 20-
10 10

0 20

(b) (c)

Figure 6: Percentage of breakpoints with noncurrent or nonresident variables for three C benchmarks
from the SPEC suite: (a) li , (b) eqntott, and (c) espresso.

We present the results for three C benchmarks from the SPEC suite in Figure 6. This figure com-
pares the percentage of breakpoints that contain noncurrent variables with the percentage of break-
points that contain nonresident variables using each of the above four approaches. The first column
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shows the percentage of instructions for which there are noncurrent variables, i.e., we map each in-
struction to its source statement and determine if there are any assignments or function calls that
have been scheduled out of source order. The other four columns show the percentage of breakpoints
with nonresident variables. For each approach listed above, we compute the number of instructions
for which there is at least one nonresident variable. The raw instruction counts are normalized by the
total number of instructions in the program. These metrics do not reflect the number of noncurrent or

nonresident variables at a breakpoint, nor do they consider the dynamic behavior of programs. Note
that these metrics also assume queries to all variables to be equally likely.

The breakpoint model used is one that considers all instructions as potential breakpoints and
corresponds to the situation where the user can interrupt program execution at an arbitrary point in
the object. We also considered a breakpoint model where only instruction that can generate a fault
are considered as breakpoints. The results for both models are close; more details can be found in
[1]. Note that these models capture the state of the user program for each machine instruction in the
object code and not for each source-level statement in the user program.

The results in Figure 6 for these benchmarks show that there are significantly more breakpoints con-
taining nonresident variables than there are breakpoints with noncurrent variables. Thus nonresident
variables are potentially a more serious problem than noncurrent variables when debugging optimized
code.

A comparison of the results of using the first approach with the results of using the third approach.
as well as a comparison of the second approach with the fourth approach show that using data-flow
analysis to detect evicted variables significantly increases the chances of recovering a register assigned
variable's value.

The effects of using reaching analysis can be measured by comparing the results of using the first
and second approach and by comparing the results of using the third and fourth approach. Our results
show that using reaching analysis decreases the number of breakpoints with nonresident variables for
both the live range approach and the evicted data-flow analysis approach.

Another way to evaluate the effectiveness of the various techniques for detecting nonresident varl-
ableg is to look at the number of variables that are nonresident at a given breakpoint. Figure 7 presents
this information using the same breakpoint model as discussed above. The leftmost column of each
graph in this figure shows the average number of register assigned variables; this number presents a
baseline for comparison. A naive debugger that does not handle register assigned variables at all has
to report all of these variables as inaccessible, so this number is the upper bound on nonresident vari-
ables for each program. The rightmost columns of these graphs depict the average number of variables
that the different strategies discussed above report as inaccessible. The results from this figure again
illustrate the effectiveness of using data-flow analysis to detect nonresident and uninitialized variables.

8 Conclusions

Prior work in debugging of optimized code has concentrated mainly on the problem of detecting and
recovering noncurrent variables and has either ignored the problem of evicted variables by assuming
that a variable is always resident in a storage location, or used a simplistic approach to tracking variable
locations. However, evicted variables are a serious problem for a symbolic debugger if the compiler
optimizations include global register allocation and assignment (as is commonly done in modern com-
pilers today). Our results indicate that evicted variables are far more serious problem than noncurrent
variables. In our sample programs from the SPEC suite, a large number of breakpoints have evicted
variables.

To detect evicted variables, it is necessary to consider the data-flow at the level of machine instruc-
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Figure 7: Number of nonresident register allocated variables for three C benchmarks from the SPEC
suite: (a) Ii , (b) eqntott, and (c) espresso.

tions since it is at this level that register re-use occurs. Thus a detailed model of the machine resources

is required. Debugger models proposed in previous studies are at a higher level than the machine level

[12,9,8,7] and are not sufficient for detecting evicted variables.
Detecting evicted variables requires analysis for the debugger. Our results show that at an approach

that uses compiler collected data-flow information (e.g., live range information for register allocation)
to track a variable's location is conservative. The impact of data-flow analysis on the number of

resident variables is significant, and our results clearly show that performing data-flow analysis to
detect evicted and uninitialized variables increases the number of variables that are correctly reported

by the debugger.
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